Chapter V: Interactions of neutrons with matter

Content of the chapter

- Introduction
- Interaction processes
- Interaction cross sections
- Moderation and neutrons path
- For more details \rightarrow see « Physique des Réacteurs Nucléaires »

Introduction

- Neutrons are neutral particles \rightarrow no Coulomb interactions as for charged particles
- Neutrons only interact with nuclei via nuclear forces \rightarrow extremely weak cross sections (compared to cross sections of a proton with same mass for instance) \rightarrow neutrons are deeply penetrating particles
- Neutrons are not directly ionizing particle \rightarrow they produce secondary charged particles which are directly ionizing \rightarrow neutrons are indirectly ionizing particles as photons
- In many applications \rightarrow neutrons have same formalism as photons
- Remark \rightarrow neutron has a negative magnetic dipolar momentum \rightarrow sensitive to intense magnetic fields

Classification of neutrons

- High energy neutrons: $E > 20$ MeV
- Fast neutrons: 10 keV < E < 1 MeV
- Epithermal neutrons: $1 \text{ eV} < E < 10 \text{ keV}$
- Slow neutrons: 0.025 eV *< E <* 1 eV
- Thermal neutrons E ≈ 0.025 eV (most probable energy at a temperature of 290 K after moderation)
- Cold neutrons: E < 0.025 eV

Attention: Different classifications exist !

Remarks on this classification (1)

- For high energy neutrons \rightarrow it is necessary to individually consider the collisions with the nucleons of the nuclei \rightarrow use of (measured) nucleon-nucleon cross sections
- However \rightarrow interferences between nucleons exist \rightarrow they affect the nucleon-nucleon interactions \rightarrow necessary corrections for the nucleon-nucleon cross sections
- The incident neutron can put into motion a nucleon of the nucleus \rightarrow this nucleon can also interact with another nucleon of the nucleus and so on... \rightarrow intranuclear cascade \rightarrow complex model

Remarks on this classification (2)

- Fast neutrons \rightarrow neutrons sources always produce neutrons with energy of about 1MeV or more (in particular fission reactions)
- Epithermal neutrons \rightarrow in this energy range interaction cross sections vary very quickly and often show resonances
- Thermal neutrons \rightarrow neutrons (regardless of their origin) slow down in matter \rightarrow thermalization \rightarrow thermal neutrons are in thermic equilibrium with their background at \approx 20 °C \rightarrow mean energy close to 0.025 eV (*E = kT* with *k* the Boltzmann constant)

Neutron interactions

2 principal interaction modes:

- 1. Scattering: Modification of the energy and of the trajectory of the neutron but the nucleus keeps an equal number of protons and neutrons
- 2. Absorption: Modification of the target nucleus \rightarrow radiation emission

Elastic scattering (n,n) (1)

- During an elastic scattering \rightarrow total kinetic energy of neutron and nucleus is not modified
- The target nucleus of mass $m₂$ initially at rest receive from the neutron (mass m_n and kinetic energy E) a kinetic energy \mathcal{T}_c in the rage $[0, T_{max}] \rightarrow$ $Am \, m_{\odot}$ $\sqrt{ }$

$$
T_{max} = \frac{4m_1m_2}{(m_n + m_2)^2}E
$$

• One neutron can give all its kinetic energy to one hydrogen atom \rightarrow the elastic scattering is an efficient process to slow down neutrons if $m_2 \approx m_n$

Elastic scattering (n,n) (2)

By conservation of energy and momentum \rightarrow we obtain equation between transferred energy by the neutron to the nucleus as a function of the recoil angle of the nucleus $\theta_r \rightarrow$

$$
T_c = \frac{4m_n m_2}{(m_n + m_2)^2} E \cos^2 \theta_r
$$

That is generally written \rightarrow

$$
T_c = \frac{4\alpha}{(\alpha+1)^2} E \cos^2 \theta_r
$$

with α = m_2/m_n

To know the mean energy transferred by the neutron \rightarrow it is necessary to determine the angle-differential cross section \Box

Elastic scattering (n,n) (3)

- Theory consider 2 types of elastic scattering \rightarrow
- 1. Direct interaction between neutron and nucleus \rightarrow For weak energies this cross section tends towards $4\pi R^2$ with R is the nucleus radius → typically *≈ 1* barn
- 2. The scattering in two steps \rightarrow first creation of a composed nucleus in an excited state then emission of one neutron to find back the initial nucleus \rightarrow the energy-differential cross section for this process has resonances because the composed nucleus has only precisely defined states (weak nuclei \rightarrow well separated states \rightarrow well separated resonances – heavy nuclei \rightarrow high density of states \rightarrow resonances superposition \rightarrow continuous variation of the cross section)
- These two processes interfere \rightarrow the total elastic scattering cross section is not simply the addition of the 2 cross sections
- For α = 1 \rightarrow the angular distribution varies as $cos\theta_r$ (for $\alpha \neq 1$ \rightarrow more complicated)

Angular distribution θ_{n}

For α = 1 \rightarrow the angular distribution of θ_n is = to the angular distribution of θ_r

Elastic scattering (n,n) (4)

• Thus we have $\langle T_c \rangle \propto \langle cos^2\theta_r \rangle$ = 1/2 \rightarrow the mean value of the transferred energy \rightarrow

$$
\langle T_c \rangle = \frac{2\alpha}{(\alpha+1)^2}E
$$

- For hydrogen $\rightarrow \alpha = 1 \rightarrow \langle T_c \rangle = E/2$
- In a general way \rightarrow the neutron energy $E^{(n)}$ after *n* elastic scattering \rightarrow

$$
\langle E'^{(n)} \rangle = \left[\frac{(\alpha^2 + 1)}{(\alpha + 1)^2} \right]^n E
$$

Elastic scattering (n,n) (5)

• To reach an energy $E^{(n)}$ from an initial energy $E \rightarrow$ the neutron has to undergo on average *n* elastic scattering with

$$
n = \frac{\log (E'^{(n)}/E)}{\log [(A^2 + 1)/(A + 1)^2]}
$$

• Example: For 2 MeV neutrons interacting with hydrogen \rightarrow 27 collisions to be thermalized (mean value)

Elastic scattering (n,n) (6)

- After an elastic scattering with fast neutron \rightarrow the nucleus is displaced \rightarrow if it has enough kinetic energy \rightarrow it can displace other nuclei \rightarrow cascade of atomic displacements
- Generally \rightarrow the cascade is localized in a volume with radius \approx 100 Å
- The atoms are displaced up to the energy transferred during the collision is larger than a characteristic energy called displacement threshold (energy necessary to break the bonds and move the atom far from its site in such a way it is no more sensitive to its attractive potential)
- Displacement threshold \approx 25 eV

Inelastic scattering (n,n') (1)

- During an inelastic scattering \rightarrow the recoil nucleus is elevated to one of its excited states \rightarrow the neutron loses a part of its kinetic energy which is transformed into kinetic and potential energy of the target atom
- There is always formation of the intermediate state of a composed nucleus and then neutron emission to finally obtain the initial nucleus in an excited state
- Generally \rightarrow the excited nucleus gets to its fundamental state by emission of one or more γ
- The inelastic cross section has resonances which correspond to the different energy states of the composed nucleus

Inelastic scattering (n,n') (2)

• Inelastic collisions can happen if the kinetic energy of the neutron exceeds a threshold energy ${\sf T_t}$ (with ${\sf E_{\sf exc}}$ the excitation energy of the nucleus) \rightarrow

$$
T_t = \frac{m_n + m_2}{m_2} E_{exc}
$$

- For ¹²C \rightarrow the first excited state is such as E_{exc} = 4.43 MeV \rightarrow the neutron must have a kinetic energy > à 4.81 MeV
- The energy lost in a inelastic collision is greater than in an elastic collision

Absorption

After an absorption, a secondary radiation will be emitted \rightarrow this radiation can then be generally detected. This secondary radiation can be:

- a γ ray (electromagnetic or radiative absorption) \rightarrow (n, γ)
- a charged particle (p, α) \rightarrow (n,p) or (n, α)
- neutrons \rightarrow (n,2n), (n,3n),... (if 1 \rightarrow equivalent to elastic scattering \rightarrow sometimes considered as elastic scattering but presence of resonances)
- products of fission \rightarrow (n,f)

Electromagnetic absorption

- Reaction (n, γ) \rightarrow the neutron is absorbed by the nucleus \rightarrow formation of an excited nucleus that emits one (or more) γ
- The radiative absorption dominates for small energies
- Its cross section shows resonances for particular energies

Absorption + emission of charged particles

- Principally reactions such as (n,p) or (n, α)
- The reactions dominate for fast neutrons because they are often endoenergetic \rightarrow moreover the transferred energy to the charges particle in the nucleus has to be important enough to allow the crossing of the wall potential of the nucleus
- For a few number of light nucleus \rightarrow reactions (n,p) et (n, α) are exoenergetic \rightarrow can happen for thermal neutrons \rightarrow examples: 3 He(n, p) 3 H, 6 Li(n, α) 3 H et 10 B(n, α) 7 Li

Absorption + fission

- Fission reaction happens for media with high $Z \rightarrow$ split of the nucleus \rightarrow production of heavy fragments + nuclei with large kinetic energy
- For example \rightarrow fission of ²³⁵U \rightarrow release of \approx 200 MeV shared between the fission fragments, 2 or 3 neutrons, β particles and photons
- The neutrons emission induces other fission reactions de \rightarrow nuclear chain reactor \rightarrow fission reactor

Interaction cross sections (1)

- The total cross section is the sum of the cross sections of \neq processes
- No « complete » calculations \rightarrow compilation of theoretical calculations + experimental data
- Strongly depends on the medium \rightarrow difficult to establish general « rules »
- For media with small Z
	- \rightarrow elastic diffusion is important for all energies
	- \rightarrow inelastic diffusion is (potentially) important for fast neutrons
	- \rightarrow absorption is (potentially) important for thermal neutrons (essentially due to radiative absorption)
- For media with large Z
	- \rightarrow absorption is completely dominant for thermal neutrons (due to fission reaction)
	- \rightarrow for large energies \rightarrow elastic diffusion is important $\frac{21}{21}$

Interaction cross sections (2)

- In a general way \rightarrow total cross section \searrow for neutron energy \nearrow
- Elastic scattering cross section is ≈ constant (except for very small energies: *E <* 10-3 eV)
- Absorption cross section varies in *1/v* (*v*: neutron velocity)
- total cross section is either constant either varies in *1/v* as a function of the dominant process
- For media with high $Z \rightarrow$ numerous resonances for fission reaction (dominating sometimes the law in *1/v*)

Cross sections for ⁶³Cu

Cross sections for ¹²C

²⁴ http://www.nndc.bnl.gov/exfor/endf00.jsp

Cross sections for ²⁰⁷Pb

http://www.nndc.bnl.gov/exfor/endf00.jsp 25

Cross sections for ²³⁵U

Cross sections for ¹H

27

Cross sections for ²H

28

Macroscopic cross section

As for photons \rightarrow we consider the transmission of a neutrons beam crossing a thick target (*I*: final intensity, *I⁰* : initial intensity, *x*: thickness, *N*: atomic density, σ_t : total cross section) \rightarrow

$$
I = I_0 \exp(-N\sigma_t x)
$$

• We define the macroscopic cross section (m⁻¹) such as \rightarrow

$$
\Sigma_t = N \sigma_t
$$

Attention \rightarrow due mainly to the multiplication phenomenon but also to multiple scattering \rightarrow the equation of the intensity after a distance *x* is often false

Moderating power

- To moderate (slow down) fast neutrons \rightarrow 2 parameters are important
	- 1. The probability of scattering
	- 2. The mean energy change for the neutron after scattering \rightarrow to have a good moderator \rightarrow a light nucleus is necessary \rightarrow rich into hydrogen
- The moderating power is defined as \rightarrow

$$
MP = \xi \Sigma_s
$$

with ξ , the average logarithmic energy decrement($\xi = ln(E_{before})$ $ln(E_{\rm after}))$ and $\mathit{\Sigma}_{\rm s}$, the macroscopic scattering cross section

Moderating ratio (1)

- However a medium with a high moderating power but with also a high absorption scattering cross section is not considered as a good moderator \rightarrow the neutron energy would be reduced but the fraction of surviving neutrons would be too weak
- Finally to moderate fast neutrons \rightarrow high moderating power is necessary but also a small absorption probability \rightarrow we define the moderation ratio (with \varSigma_{a} , the macroscopic absorption cross section) \rightarrow

$$
MR = \frac{\xi \Sigma_t}{\Sigma_a}
$$

Moderating ratio (2)

MP and MR for \neq materials for initial and final energies of 100 keV and 1 eV

water has MP larger than heavy water $(D_2O$ or 2H_2O) because the mass of hydrogen is 2 times smaller than the mass of deuterium but hydrogen absorb neutron (to form deuterium) more easily than deuterium (to form tritium) \rightarrow MR larger for heavy water (attention: heavy water more expensive)

Moderation: Conclusion

To moderate fast neutrons \rightarrow use of materials with a mass close to the mass of the neutron \rightarrow materials rich in hydrogen (water, paraffin) → **never** lead

Mean free path

• It is often interesting to consider another parameter \rightarrow the mean free path $\lambda \rightarrow$

$$
\lambda = \frac{1}{\Sigma_t}
$$

i.e. the mean distance between 2 interactions

• Useful parameter for calculations of trajectories of neutrons in matter by Monte Carlo simulations

Neutron path: examples

 1 MeV neutrons incident on cylinders of polyethylene, aluminium and lead (Monte Carlo calculations)

